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ABSTRACT

Magnetic resonance (MR) images (MRI) are routinely acquired with high in-plane resolution and lower through-
plane resolution. Improving the resolution of such data can be achieved through post-processing techniques
knows as super-resolution (SR), with various frameworks in existence. Many of these approaches rely on external
databases from which SR methods infer relationships between low and high resolution data. The concept of self
super-resolution (SSR) has been previously reported, wherein there is no external training data with the method
only relying on the acquired image. The approach involves extracting image patches from the acquired image
constructing new images based on regression and combining the new images by Fourier Burst Accumulation.
In this work, we present four improvements to our previously reported SSR approach. We demonstrate these
improvements have a significant effect on improving image quality and the measured resolution.
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1. INTRODUCTION

Determining the acquisition resolution in magnetic resonance (MR) images (MRI) is an important step in the
imaging system that can have dramatic consequences for the usability of a data set. The spatial resolution is chosen
based on imaging time, desired signal to noise ratio, and other factors. However, spatial resolution is ultimately
determined by the amount of k-space acquired in the Fourier domain. Seeking post-acquisition ways to improve
the resolution of MR images has been an active area of research for three decades.1–15 Super-resolution (SR), as
this is known, is the process through which we estimate high frequency information that is not acquired during
the imaging at lower resolutions.

MR images are typically upsampled to an isotropic resolution having been acquired with high in-plane and
low-through plane resolution. This results in images with partial volume artifacts that lead to degraded image
analysis in subsequent processing. There have been many approaches to SR in medical imaging, see the review
papers.16,17 SR techniques in medical imaging include model based,4 and regression11 using random forests12 and
deep learning.14,15 Model based approaches suffer from the inherent ill-posed nature of the problem. Regression
work can have issues matching the contrast between the training data and the data from the new subjects, though
there has been work18 that can adaptively update the training data to avoid contrast mismatches. Model based
approaches, which are ill-posed, have begun to be replaced by regression based work, which itself has issues with
the contrast between the training data and new subjects not matching. To avoid these issues, there has been
exploration of self super-resolution (SSR)—where the test data itself is suitably transformed and used to train
the regression models. For example, Huang et al.19 downsample an input image and learn a regression between
the downsampled image and the original input image. This regression is then applied to original input image to
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generate a higher resolution image. We note that Huang et al.19 worked on natural images and attempts to learn
regression in medical imaging20 have depended on external training images.

Previously,13 we described a method that only uses information from an available low resolution (LR) image
to estimate its SR image in a truly SSR approach. Our SSR approach takes advantage of the fact that in an
anisotropic acquisition, the in-plane resolution is higher than the through-plane resolution.

2. NEW WORK TO BE PRESENTED
In this work, we present four changes to our previously reported SSR method;13 we refer to our new method as
SSRv2 and our previously reported work as SSRv1.13 SSRv1 comprised two steps: 1) generating new additional
images, each of which is LR along a certain direction, but is HR in the plane normal to it. Thus, each new image
contributes information to a new region in the Fourier space. 2) We combine these images in the Fourier space
with Fourier Burst Accumulation (FBA).21,22 We currently include a comparison between SSRv1 and SSRv2,
noting that SSRv1 has been shown to be better than state-of-the-art SR methods.

3. METHODS
We briefly review Fourier Burst Accumulation (FBA)21,22 and SSRv1, before introducing SSRv2.

Fourier Burst Accumulation Delbracio et al.21,22 introduced the image deblurring method known as
Fourier Burst Accumulation (FBA). Given a series of images of the same scene acquired in the burst mode of a
digital camera, FBA recovers a single high resolution image with reduced noise. The assumption is that each
burst image is blurred due to random motion blur introduced by hand tremors and the blurring directions are
independent of each other. x is the unobserved true HR image, and yi for i = 1, . . . , n the i th observed LR
image—which is blurred in a random direction with kernel hi. So we have yi = hi ∗ x+σi, where σi is the noise
in the i th image. For the j th voxel of x, the FBA estimate x̂p(j) is,

x̂p(j) = F−1
(

n∑

i=1

wi(ω)Yi(ω)

)
(j), where wi(ω) =

|Yi(ω)|p
n∑

i=1

|Yi(ω)|p
and Yi(ω) = F(yi). (1)

Thus the Fourier transform of the high resolution image x is a weighted average of the Fourier transforms Yi(ω)
of the input burst images. That is, given LR images blurred independently from the same HR image, an estimate
of the underlying HR can be calculated using FBA.

SSRv1 For the SSR of MR images, the input is y and the desired SR output is x̂. We assume that y
is LR in the through-plane (z-axis) direction and is HR in-plane. We denote the spatial resolution of y as
rx×ry×rz mm3, and assume that rz > rx = ry. In Fourier space, the extent of the Fourier cube is [−Rx, Rx], where
Rx = 1/2rx mm−1 on the ωx axis, [−Ry, Ry], Ry = 1/2ry mm−1 on the ωy axis, and [−Rz, Rz] Rz = 1/2rz mm−1
on the ωz axis. Clearly, Rz < Rx = Ry. To improve the resolution in the z direction, it is necessary to widen the
Fourier limit on the ωz axis by estimating the Fourier coefficients for frequencies that are greater than Rz. We
use FBA for estimating the Fourier coefficients at these frequencies.

FBA requires multiple images as input and expects that some of the images have the Fourier coefficients in
the desired region and uses those to fill in the missing Fourier information. It is impossible to perform FBA with
just a single image y as there is no way to estimate the Fourier information outside of [−Rz, Rz] on the ωz axis.
Thus, we need additional images that can provide higher frequency information on the ωz axis. The first stage in
our proposed SR algorithm is to create these additional images through synthesis given only y.

To generate images from y, which can be used by FBA and thus cover more high frequency portions of Fourier
space, we use a regression framework with rotated and filtered versions of the available y. We initially upsample
y to an isotropic volume using cubic b-spline interpolation, and assume the following model, y = h ∗x+σ. Given
rotation matrices Mi, i ∈ {1, . . . , n}: 1) generate Mi(y), y rotated by Mi; 2) apply the rotated kernel Mi(h) to y
to create yi = Mi(h) ∗ y; 3) apply the kernel h to Mi(y) to form ỹi = h ∗Mi(y). Then for each Mi, we have two
new images yi and ỹi. Ignoring noise, we can formulate yi = Mi(h) ∗ y = Mi(h) ∗ h ∗ x, and build a regression
between yi and y as training images by extracting patches from yi and pairing them appropriately with patches
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x: HR voxel

F(x): HR
Fourier extent

y:
LR voxel F(y) y = h ∗ x yi = Mi(h) ∗ y = Mi(h) ∗ h ∗ x

Step 1: ∗Mi(h)

Step 2: Learn regression for deconvolution

Trained ANR Training Stage
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Step 2: Learn regression for deconvolution

Step 3: Rotate by Mi
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Step 4: ∗h

Trained ANR

ŷi
Step 5: Extract features, apply ANR

M−1
i (ŷi)

Step 6: Rotate by M−1
i

1

Figure 1. Steps 1 and 2 show how to construct the training data from the input image, y. Steps 3 and 4 show how to
generate the rotated images, ỹi. Step 5 shows how to synthesizing the images, ŷi, that have different Fourier extents,
and Step 6 shows how to undo the rotations, so the images can be combined using the Fourier Burst Accumulation to
generate the SR image x̂p = FBA(y,M−1

1 (ŷ1), . . . ,M
−1
n (ŷn), p).

in y. Thus, we learn the transformation that deconvolves yi to get y, we then apply this learned deconvolution to
ỹi. Again ignoring noise, we note that ỹi = h ∗Mi(y) = h ∗Mi(h ∗ x) = h ∗Mi(h) ∗Mi(x). Thus deconvolving
yi to cancel the effects of Mi(h) is analogous to deconvolving ỹi to cancel the effects of h, as ỹi is also rotated.
The regression is learned using Anchored Neighborhood Regression (ANR).23 We provide a brief summary of
ANR, complete details of which are in Timofte et al.23 The training pair in ANR for each rotation Mi is yi and
y, with the test image being ỹi. ANR has been shown to be effective in 2D super-resolution of natural images
with better results than some of the state-of-the-art methods.24,25 ANR is computationally very fast as opposed
to most other SR methods23 which is a very desirable feature in our setting. ANR creates training data from yi
and y, by calculating the first and the second gradient images of yi in all three directions using the Sobel and
Laplacian filters. At voxel location j a 3D patch is extracted from each of these gradient images and concatenated
to form a feature vector fj(yi). ANR uses PCA to reduce the dimensionality of the feature to the order of ∼ 102.
SSRv1 (and SSRv2) do not extract continuous voxels as the LR acquisition means neighboring voxels are highly
correlated. Our patch dimensions are linearly proportional to the amount of relative blurring in the x, y, and
z directions in y. This means that patches are cuboids in shape and are longer in the dimension where the
blurring is higher. We then calculate the difference image yd

i = y − yi and the extracted patch gj(yd
i ) and pair

it with fj(yi) to create the training data. Next, ANR jointly learns paired high resolution and low resolution
dictionaries, using the K-SVD algorithm. The atoms of the learned dictionary are regarded as cluster centers with
each feature vector fj(yi) being assigned to one based on the correlation between feature vectors and centers.
Cluster centers and their associated feature vectors are used to estimate a projection matrix Pk for every cluster
k, by solving a least squares problem such that, Pkfj(yi) = gj(y

d
i ). Given an input test image, ỹi, feature vectors

fj(ỹi) are computed and a cluster center is assigned based on the argmax of the correlation, then the stored Pk

is applied to estimate the patch at voxel j in the newly created image ŷi. Overlapping patches are predicted
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Algorithm 1 SSRv1 (Complete details can be found in Jog et al.13)
Data: LR image y
Upsample y to isotropic digital resolution
Based on the spatial resolution of y, calculate h, the slice selection filter
for i=1:n do

Construct a rotation matrix Mi and apply to y to form the rotated image Mi(y)
Apply Mi to h to form the rotated filter Mi(h)
Generate yi = Mi(h) ∗ y
Generate ỹi = h ∗Mi(y)
Use ANR to synthesize ŷi = ANR(yi,y, ỹi)

end for
Apply FBA to get, x̂p = FBA(y,M−11 (ŷ1), . . . ,M

−1
n (ŷn), p)

and the overlapping voxels have their intensities averaged to produce the final output ŷi. This modified ANR
is carried out to estimate each ŷi where the rotation matrices can be chosen intelligently to cover the Fourier
space. ANR on its own can only add information in a single direction of the Fourier domain. However, when
run in multiple directions, we are able to add coefficients for more frequencies in the Fourier space. SSRv1 is
summarized in Algorithm 1. The flow chart in Fig. 1 shows (Steps 1 & 2) how to construct the training data from
the input image, y; (Steps 3 & 4) how to generate the rotated images, ỹi; (Step 5) how to synthesize the images,
ŷi, that have different Fourier extents; and (Step 6) how to undo the rotations so the images can be combined
using the Fourier Burst Accumulation to generate the SR image x̂p = FBA(y,M−11 (ŷ1), . . . ,M

−1
n (ŷn), p).

SSRv2 Our first modification to SSRv1 regards the value of p used in the FBA reconstruction. We
experimentally observed that peak signal to noise ratio (PSNR) increases as p increases, see Fig. 2(a). However,
SSRv1 fixed p = 2, which is clearly suboptimal and we therefore consider p =∞. In practical terms, we modify
Eqn. 1 to take the maximum Yi(ω) over i for each frequency ω. The second modification to SSRv1, was based on
the observation that the method is sensitive to the fidelity of the input images to FBA; therefore the interpolation
of the rotated images, yi, is of critical importance. We further observed that the original implementation of SSRv1
used builtin rotation functions in Matlab that unneccessarily degraded the rotated images. As an alternative to
rotated images through interpolation, we propose when considering rotations that align cardinal axes to compute
the rotations via simple reorderings of the interpolated isotropic version of y thus avoiding any interpolations
due to rotation—for cardinal axis rotations. Our third change to SSRv1, was initially designed to accelerate the
computation. We pad the images to have a digital resolution of the next highest power of 2, the point being to
take advantage of a FFT for computation purposes. However, we observed that using a padded image with a FFT
had a marginal improvement on the PSNR of the output image, x̂∞. This may in part be because of interpolation
that occurs within the default Matlab Fourier Transform, however the exact nature of this issue remains an open
question. The final improvement to SSRv1, involves the space with which the FBA computation was performed.
SSRv1 had originally had uncropped the Fourier domain images, however this leads to interpolation issues when
doing the F−1. As SSRv2 now keeps images in a power of 2 padded space and uses FFT, the FBA analysis can
be done in a power of 2 padded space and inverted efficiently without any unneccessary interpolations. See Fig. 2
for inputs, and outputs of SSRv1 and SSRv2.

4. EXPERIMENTS

We compare SSRv1 and SSRv2 on T1-weighted Magnetization Prepared Rapid Gradient Echo (MPRAGE) images
from 18 subjects of the Neuromorphometrics dataset. The resolution of images in this dataset is 1 mm3 isotropic
and we consider this our HR dataset. We create LR images by modeling a slice selection filter (h) based on a
slice selection pulse modeled as a truncated sinc function. The slice selection filter itself looks like a jagged rect
function. We create LR datasets with slice thicknesses of 2 mm. The in-plane resolution remains 1× 1 mm2.

From the LR data, we generated SR data using both SSRv1 and SSRv2 noting that SSRv1 has been previously
shown to be better than state-of-the-art SR methods. Evaluation was done using PSNR by direct comparison
between the SR images and the HR images for the 18 subjects with results comparing SSRv1 and SSRv2 are
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Figure 2. Shown is (a) a plot varing p vs. PSNR of x̂p, (b) x, (c) y, (d) x̂∞ for SSRv1, and (e) x̂∞ for SSRv2.

Table 1. Mean, standard deviation (Std. Dev.), minimum (Min), and maximum (Max) of the peak signal to noise
ratio (PSNR); computed between the HR image, x, and the SR image, x̂∞, generated by both SSRv1 and SSRv2.

PSNR (db)
Method Min Mean Std. Dev. Max

SSRv1 34.27 37.14 1.467 39.10
SSRv2 34.34 37.56 1.430 39.50

shown in Table 1. To avoid an unfair comparison between SSRv1 and SSRv2, we set p =∞ in SSRv1 had we not
done this SSRv2 would be dramatically better than SSRv1. A paired Wilcoxon Rank Sum test comparing SSRv1
and SSRv2 with respect to the PSNR values has a p-value of 1.526× 10−5 demonstrating significant improvement.

5. DISCUSSION AND CONCLUSION

We have described SSRv2 an improvement on SSRv1 for MRI super-resolution that uses the existing high
frequency information in the given LR image to estimate the SR image.
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