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Abstract

The goal of active learning algorithms is to judiciously
select subsets of unlabeled samples to be labeled by an or-
acle, in order to reduce the time and cost associated with
supervised learning. Previously, active learning techniques
for deep neural networks have used the same network for
the task at hand (e.g., classification) as well as sample se-
lection, which can be conflicting goals. To address this
issue, we use a separate sample scoring network to cap-
ture the relevant information about the distribution of the
labeled samples, and use it to assess the novelty of unla-
beled samples. Specifically, we propose to efficiently train
the scoring network using a self-supervised learning (pre-
text) task on the labeled samples. To make the scoring
network more robust, we added to it another head, which
is trained using the supervised (task) objective itself. The
scoring network was paired with a scoring function that al-
lows an appropriate trade-off between the two heads. We
also ensure that the selected samples are diverse by selec-
tively fine-tuning the scoring network in sub-rounds of each
query round. The resulting scheme performs competitively
with the state-of-the-art on benchmark datasets. More im-
portantly, in realistic scenarios when some labels are erro-
neous and new classes are introduced on the fly, the perfor-
mance of the proposed method remains strong.

1. Introduction
In spite of their unprecedented accuracy, a hurdle in the

deployment of deep learning for many real world prob-
lems is the requirement of large labeled data. While it is
easy to access large repositories of unlabeled data, exten-
sive data labeling and annotation is often impractical, time-
consuming, and expensive, such as for medical images.
Strategies to reduce the labeling requirement include trans-
fer, semi-supervised, few-shot, and active learning. Active
learning algorithms are used to decide whether or not to
send an unlabeled sample for labeling to an oracle (e.g.,
a medical expert), such that the increase in the task per-

formance (e.g., classification accuracy) is maximized with
respect to a labeling cost (e.g., cumulative number of labels
acquired).

We propose a pool-based sampling technique for ac-
tive learning in which the learning progresses iteratively in
rounds. In each round, up to a budgeted number of N addi-
tional samples can be selected from the unlabeled pool for
labeling [7, 29, 27]. The selection strategy is usually based
on picking novel and diverse samples from the unlabeled
pool. Novelty (a.k.a. uncertainty and confusion) refers to
selecting samples that are least similar to the previously la-
beled samples in order to maximize the information gain by
getting them labeled. Diversity refers to selecting samples
that explore various high probability regions of an appropri-
ate latent space, instead of being similar to each other.

It is well known that a task network is a poor estimator of
its own uncertainty on unlabeled samples that are unlike the
labeled samples [16]. Yet, previous active learning methods
have relied on it for estimating uncertainty [29, 10, 7, 2].
Because task performance and uncertainty estimation can
be conflicting goals, we propose using an auxiliary scoring
network, in line with previous studies [31]. Secondly, we
use the ease of solving a self-supervised learning task on un-
labeled samples by the scoring network trained on labeled
samples as a proxy for the relative likelihood of unlabeled
samples to belong to the distribution of the labeled samples.
Low-likelihood samples are good candidates for labeling as
they are likely to bring new information. SSL has been used
to find out-of-distribution (OOD) samples for anomaly de-
tection [18, 14]. Surprisingly, SSL has not been used for
scoring novelty in active learning. The self-supervision la-
bels can be generated inexpensively for testing the uncer-
tainty of the unlabeled samples. Simply training a second
network adds minimal additional computational cost com-
pared to other methods that train variational or adversarial
models [29, 7], which we confirmed empirically. Because
of the use of this pretext (self-supervised) task, we call this
technique pretext-based active learning (PAL).

Because SSL works best with a large dataset, our third
innovation is to improve the performance of the scoring
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network using multi-task learning. Multi-task learning is
known to help regularize its constituent networks in the case
of limited labeled data [3], which is the case for the previ-
ously labeled samples in active learning. We used the clas-
sification task itself as the second objective of the scoring
network. Additionally, our formulation of the scoring func-
tion allows for a usable trade-off between the two heads for
mutual correction.

Finally, we ensure diversity among the N samples se-
lected during a query by breaking it into K sub-queries,
and checking for novelty of the next sub-query. We tune
only the self-supervision head between sub-queries to en-
sure diversity without increasing the labeling cost. PAL
showed accuracy that was competitive with the state-of-the-
art [29, 27, 10] in benchmarks, without the use of computa-
tionally expensive training (Section 4.1). More importantly,
we also tested PAL for the following two realistic scenarios
described below.

First, the data labels obtained in the real world are hardly
ideal due to human or machine errors in the labeling (e.g.,
using NLP to label images). A good sampling technique
should be able to make out truly confusing samples in pres-
ence of label noise, and yet active learning techniques have
not been tested on noisy labels, except [29]. We hypoth-
esized and confirmed that PAL is more resilient to label
noise as compared to other techniques because it has a label-
independent pretext task head (Section 4.2).

Second, data from several classes may be underrepre-
sented or, worse, absent in a biased initial pool. Alterna-
tively, as the labeling process proceeds, previously unseen
classes might be discovered in the unlabeled data, and one
might want to include them in the process from then on.
Yet, most works on active learning assume that all classes
are represented in the initial labeled pool. A good ac-
tive learning strategy should rapidly procure samples from
such classes to be labeled and match its performance on
these classes to the previously well-represented. We found
that PAL quickly recovered accuracy on previously unseen
classes by an appropriate momentary increase in their sam-
pling rates in the first few queries after their discovery. This
is further discussed in Section 4.3.

We also show that PAL is insensitive to the choice of
the scoring network architecture (Section 4.4), but the three
components – self-supervision, supervision, and diversity –
are important (Section 4.5).

2. Related Work

2.1. Active learning

There are several settings for active learning, such as
membership query synthesis and stream based sampling. In
the former, the learner generates new samples to query the
oracle [1, 34, 19], while in the latter the unlabeled dataset is

presented as a stream, and is evaluated online [5, 6]. How-
ever, unlike these settings, pool-based sampling makes a
more complete use of unlabeled and labeled data that is of-
ten available [29, 27, 10]. In this setting, starting with a set
of labeled samples, a fixed number of samples from the un-
labeled pool is selected for querying the oracle for labels so
that a performance metric (e.g., classification accuracy) can
be maximized. The proposed method fits this setting.

Pool-based active learning techniques aim to pick sam-
ples that are novel and/or representative. Novelty (a.k.a.,
uncertainty, confusion, perplexity, non-triviality, out-of-
distribution, and informativeness) refers to an unlabeled
sample’s ability to provide new information, if labeled, in-
dependently of other samples selected. Among early pro-
posals for measures of novelty, entropy of the estimated
class probability mass function (PMF) [28] is too simplistic
prone to calibration error [16], discordance between a com-
mittee of classifiers [13] can be computationally expensive,
and distance from a linear decision boundary [30] is not di-
rectly applicable to deep neural networks because of their
complex decision boundaries. Distance from an adversarial
example has been proposed as an approximation of distance
from decision boundary [7], but also it requires computa-
tionally expensive gradient descent on image pixels. Un-
certainty estimations based on Bayesian frameworks, such
as MC-dropout [9, 11], are also computationally expensive.
Surprisingly, no one has used the difficulty of solving a self-
supervised pretext task as a measure of novelty, which re-
quires only up to one additional network to be trained in
parallel with the task network.

Methods based on diversity (a.k.a. representation and
coverage) seek to select samples that can represent data dis-
tribution well. Even if the selected samples are individually
novel, their similarity to each other can limit the joint in-
formation gained from labeling them as a query group. A
method based on identifying a core-set has been proposed
that models the empirical loss over the set of already la-
beled samples combined with the pool of query samples on
the empirical loss over the whole dataset [27]. However,
this approach suffers when the representations are high-
dimensional, because the Euclidean distance is a poor local
distance estimator in high dimensional spaces. An alterna-
tive approach called variational adversarial active learning
(VAAL) aims to learn a good representation using a varia-
tional autoencoder (VAE) trained adversarially using a dis-
criminator that tries to predict if a sample is already labeled
[29].

2.2. Self-supervised learning

Self-supervised learning (SSL) has shown great promise
in learning usable data representations without needing ex-
plicit data labels. The learned representation can later be
fine-tuned with a smaller labeled dataset. Most of the pro-
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posed SSL techniques automatically create a supervised
pretext task by degrading an unlabeled image, and training
a neural network to recover the original image. Some com-
monly used randomized degradations on an image for SSL
are removing color [21], reducing resolution [22], occlud-
ing parts of an image [25], jumbling the spatial order of its
sub-images [24], and applying geometric transforms [12].

SSL can also be used to assess the degree to which a
given image is plausible in a probabilistic sense with re-
spect to the distribution of the training images, in order
to find out-of-distribution (OOD) samples [18, 14]. If a
synthetically degraded version of an image can be restored
close to its original, then it follows that images similar to it
must have been encountered and modeled during SSL. We
use this idea to identify unlabeled images that are most un-
like the previously labeled images, and therefore likely to
maximize gain in information when labeled. The additional
problem that we had to solve was that our training dataset
was small due to the active learning scenario.

2.3. Multi-task learning

It has been theoretically proven that, if tasks are re-
lated and training dataset is limited, multi-task learning can
help improve the accuracy of both tasks [3]. Consequently,
multi-task learning has been a subject of vigorous research
in deep learning [33, 4, 26]. In our experience, multi-task
learning often requires smaller computational costs (fewer
networks) in comparison to ensembles for the same task for
comparable gains in accuracy using comparable constituent
multi-net architectures. We used this idea in the scoring net-
work, for the above mentioned reason, as well as to include
the label information, while modeling the distribution of the
labeled samples.

3. Method: Pretext based Active Learning
Our method is an instance of pool-based active learning,

essence of which can be described as follows. Let the pool
of currently labeled samples be DL and the pool of unla-
beled samples beDU . A task network fθ(xl) parameterized
by θ is trained on all samples xl ∈ DL. The active learn-
ing algorithm selects a budgeted set of N or fewer samples
from DU in each query. The queried samples are then la-
beled by an oracle (assumed ideal, unless stated otherwise),
added to DL, and removed from DU . The task network is
retrained on the expandedDL and its increase in accuracy is
examined. This process is repeated until a specified number
of samples |DL| are labeled or a desired accuracy level is
achieved.

Previous methods estimated the uncertainty of the unla-
beled samples using the task network itself, e.g., based on
the entropy of computed class PMF. As shown in Figure 1,
we use a different neural network than task network for our
selection strategy, which we refer to as the scoring network

hereafter. The scoring network has two heads, one each for
self-supervision and classification, whose outputs are used
to assign a confusion score S to an unlabeled image x.

3.1. Self-supervision head

The self-supervision head estimates the likelihood of the
unlabeled data to be sampled from the distribution of the
labeled samples. In particular, we rotate the images by 90i◦

for i ∈ {0, 1, 2, 3} and train a network gφ parameterized
by φ to predict i on only the images from DL so that the
head learns the distribution of the labeled data. Using this
head, the following confusion score SR is assigned to each
unlabeled image x:

SR(x) = −
∑

iε{0,1,2,3}

gφ(rot90i(x))i, (1)

where rot90i(.) is the rotation function and gφ(.)i is the ith

component of the estimated PMF of rotation angles. We
hypothesize that an image x ∈ DU for which SR is closer
to its minimum value −4 will likely be similar to the la-
beled points inDL, and will fetch little extra information, if
labeled. Conversely, for OOD points SR will be closer to 0.

3.2. Classification head and hybrid score

A scoring network trained just on a self-supervised task
may not work very well for the following reasons. Firstly,
the score SR is not reliable for images that have a rotational
symmetry, and might be high even if the scoring network
has modeled the semantic features well. Moreover, the la-
bels of DL are left unused by the scoring network. To cor-
rect for the mistakes of the rotation head and to use the la-
bels in DL, we introduce a classification head hψ(x) pa-
rameterized by ψ in the scoring network. We compute the
degree to which the outputs of hψ for an unlabeled sample
x are close to a uniform PMF U , using KL divergence [17],
as a second measure of confusion SC(x), to give a hybrid
confusion score S(x):

S(x) = SR(x) + λSC(x) where (2)
SC(x) = −KL(U || hψ(x)),

where λ ≥ 0 is a relative importance hyperparameter. For
an OOD sample, we expect the KL divergence to be low
and SC to be high.

The negative of KL divergence of the class PMF from
uniform distribution is a more suitable alternative to entropy
– a more popular measure of confusion – because its mag-
nitude as SC on classifiable images appropriately overshad-
ows SR (e.g., in case of rotationally symmetric images) as
shown by the following proposition:

Proposition 1: Negative of KL-divergence of a class
PMF from a uniform distribution can overshadow the con-
fusion score from SR, but entropy cannot.
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Figure 1. The proposed pretext-based active learning (PAL) has
a scoring network in addition to a task network. The two heads
of the scoring network are trained on the labeled data, but they
assign novelty scores to the unlabeled data points. Dashed lines
are training signals. Top N scoring samples are labeled by the
oracle.

Proof: Consider a binary classification problem for anal-
ysis, with p as the predicted probability score by the task
network for the correct class. When the unlabeled sample is
almost correctly classified with p→ 1, we get the following
for the hybrid confusion score of Equation 2:

lim
p→1

S = lim
p→1

(
SR −

λ

2
log

(
1

2p

)
− λ

2
log

(
1

2(1− p)

))
= SR −

λ

2
log

(
1

2

)
− λ

2
lim
p→1

log

(
1

2(1− p)

)
= −∞.

On the other hand, if SC is replaced by the entropy of the

PMF hψ , then the hybrid score SE would be finite because:

lim
p→1

SE = lim
p→1

(SR − λp log(p)− λ(1− p) log(1− p))

= SR − 0− λ lim
p→1

(1− p) log(1− p)

= SR − λ lim
p→1

log(1− p)
1

(1−p)
= SR,

using L’Hôpital’s rule to equate the second term to 0. 2

An added advantage of using a multi-task setting for the
scoring network is getting better ordinal estimates of a true
latent score due to an ensemble-like effect, as long as the
correlations between the two components of the score and
their correlation with the underlying score are positive. This
can follows from the following proposition:

Proposition 2: There exists a trade-off parameter in
Equation 2 that maximizes the correlation between the true
underlying score and the hybrid score, which is greater than
or equal to the correlation of the true score with either of the
components, as long as all correlations between the scores
are positive.
Proof: Note that the requirement of a positive correlation
is only a weak one for any reasonably trained networks
gφ and hψ , as we empirically show in Table 1. Now,
without loss of generality, let us assume that some mono-
tonic transformations of the true underlying score, the self-
supervision score, and the classification score give stan-
dardized random variables u, v, and w respectively, such
that their means µu = µv = µw = 0, and their vari-
ances σ2

u = σ2
v = σ2

w = 1. Further, we assume that the
covariances σuv , σuw, and σvw are positive. Let an ana-
log of the hybrid score s be a positive combination of the
two given by s = αv +

√
1− α2w, where α ∈ [0, 1] has

a monotonic relation with the λ ≥ 0 in Equation 2, and
the variance σ2

s = 1. Then, the correlation between u
and s, which is the same as the cosine between them, is
E [u.s] = ασuv+

√
1− α2σuw. If we maximize this corre-

lation by setting its derivative with respect to α to zero, we
get:

dE [u.s]

dα
= 0

=⇒ d

dα

(
σuvα+ σuw

√
1− α2

)
= 0

=⇒ σuv +
−α√
1− α2

σuw = 0

=⇒ σ2
uv(1− α2) = σ2

uwα
2

=⇒ α = ± σuv√
σ2
uv + σ2

uw

Clearly, a maxima for E [u.s] exists, because its second
derivative is negative for α∗ = + σuv√

σ2
uv+σ

2
uw

when the co-

variances are positive, and α∗ ∈ (0, 1). 2
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SVHN CIFAR-10 CIFAR-100 Caltech-101
rp 0.42 0.49 0.46 0.63
rs 0.44 0.50 0.34 0.57

Table 1. Pearson’s correlation (rp) and Spearman’s correlation (rs)
between SR and SC of unlabeled data points for the four datasets
using a model trained on 10% of the samples.

In summary, we can select the N most informative sam-
ples from DU with the highest S(x) as per Equation 2 in
each query round, after finding a good setting for the hyper-
parameter λ ≥ 0 based on validation.

Algorithm 1: Pretext-based Active Learning (PAL)
Result: Set of additional samples to be labeled DQ
Data: Labeled pool DL := {XL, YL}, unlabeled

pool DU := {XU}, query size N
Set: Num. epochs EQ and ES , num. sub-queries K
# Training task and scoring networks
for t ∈ {1, . . . , EQ} do

for {xl, yl} ∈ DL do
θ ← θ − η∇θL(fθ(xl), yl) # Task network
ψ ← ψ − η∇ψL(hψ(xl), yl) # SC
for i ∈ {0, 1, 2, 3} do

φ← φ− η∇φL(gφ (rot90i(xl)), i) # SR
for xu ∈ DU do

Use g, h to compute and save SR(xu), SC(xu)
# Diversity-based sub-query sampling
Initialize: DQ = ∅;φ′ = φ
for k ∈ {1, . . . ,K} do

for n ∈ {1, . . . , NK } do
if k == 1 then

xq ← arg min
xu∈DU

SR(xu) + λ1SC(xu)

else
xq ← arg min

xu∈DU

SR(xu) + λ1SC(xu) +

λ2SD(xu)
DQ ← DQ ∪ {xq}
DU ← DU − {xq}

for t ∈ {1, . . . , ES} do
for xq ∈ DQ do

for i ∈ {0, 1, 2, 3} do
φ′ ← φ′−η∇φ′L(gφ′ (rot90i(xq)), i)

for xu ∈ DU do
Use gφ′ to compute and save SD(xu)

Get oracle to label DQ and update DL

3.3. Diversity score

To ensure that the most informative N samples are not
similar to each other, we divide a query of size N into K
sub queries of size N

K samples each. For selecting the first
sub query, we select the top N

K samples using the confusion
score S from Equation 2. After picking these, we fine-tune

the scoring network using self-supervision without asking
the oracle for their labels in the middle of the query. Using
this fine-tuned network, we generate a score SD, quite sim-
ilar to Equation 1, where gφ′ replaces gφ. SD promotes di-
versity as it would be small for data points which are similar
to the points already selected in the previous sub-queries.

Now, we define an updated score S:

S(x) = SR(x) + λ1SC(x) + λ2SD(x) (3)

where SR(x) and SC(x) are the previously defined confu-
sion score components. Using Equation 3 we select another
sub-query of N

K samples, and the process repeats K − 2
times.

The process of selecting the query samples DQ is de-
scribed in Algorithm 2 dubbed pretext-based active learn-
ing (PAL). While gφ′ is fine-tuned during a sub-query, all
networks are trained from scratch using the cross entropy
loss L after the oracle labels DQ outside Algorithm 2.

4. Experiments and Results

In this section, we empirically show the effectiveness of
the proposed pretext-based active learning (PAL). We dis-
cuss the experimental setup, datasets used, techniques com-
pared and the implementation details.

Datasets: We performed experiments on four datasets:
(1) SVHN [23], where classification task has to be per-
formed for ten digit classes (house numbers) with color im-
ages of size 32× 32 pixels from google street view images,
(2) CIFAR-10 [20], where classification task has to be per-
formed on ten classes in this widely-used computer vision
benchmark that contains color images of size 32 × 32 pix-
els, (3) CIFAR-100 [20], which is similar to the CIFAR-10
dataset in image size, but is much more difficult with 100
classes and only 600 images per class, and (4) Caltech-101
[8], where classification has to be performed on color im-
ages of size 300 × 200 pixels belonging to 101 different
classes, with between only 40 to 800 images per class.

Techniques compared: We compared the performance
of our approach with the following active learning sampling
strategies. (1) Random sampling: This is the simplest but
nevertheless a strong baseline involving randomly picking
samples to be labeled. (2) VAAL: This technique involves
using a VAE to learn a feature space and then adversarially
training a discriminator on it. It is a current state-of-the-art
technique for active learning [29]. (3) DBAL: This method
uses Bayesian CNNs to estimate uncertainty of unlabeled
points and to pick the most uncertain samples [10]. (4)
Core-set: This is a strong representation-based method for
selecting the samples most different than the labeled sam-
ples to maximize both uncertainty and diversity of the sam-
ples to be picked for labeling [27].
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Experimental setup: A fair comparison between vari-
ous active learning techniques was ensured in line with prior
works [29, 27]. All techniques were used to iteratively ex-
pand the labeled dataset for training a common classifier ar-
chitecture – VGG16 [32] – from scratch during each query
round. An average of results starting with five random ini-
tializations are reported. The initial labeled pool of samples
was common to all techniques, and comprised 10% of the
whole dataset. Each query added another 5% of the sam-
ples selected by the individual active learning algorithms
to their respective labeled sets that diverged after the ini-
tial 10%. The oracle can be assumed to provide error-free
labels, unless stated otherwise.

For the scoring network of the proposed PAL approach,
we used a ResNet-18 [15] architecture. The relative impor-
tance hyperparameters in Equation 3) were selected from
{0.5 , 1.0}. Learning rates were in the range [10−1, 10−4].
Optimizers were either ADAM or SGD, depending on vali-
dation results. The hardware included an NVIDIA GeForce
GTX 1080 GPU running CUDA 10.2 and cuDNN 7.6 using
PyTorch.

4.1. Performance versus fraction of data labels

Figure 2 shows the mean accuracy for five runs for differ-
ent fractions of the data labeled, for different active learning
techniques. Our PAL strategy outperformed random sam-
pling by a wide margin and consistently seems to outper-
form VAAL [29], DBAL [10], and core-set [27]. For in-
stance, PAL requires only 20% of labeled SVHN images
to achieve performance equal to that achieved by VAAL or
DBAL using 30% labels, thus saving a 33% of labeling ef-
fort and cost. Additionally, PAL requires only about 2 hours
per query round to train on a single GTX 1080 GPU with
11GB memory for SVHN, whereas more computationally
expensive methods such as VAAL [29] take more than 24
hours for the same. Out of the techniques compared only
core-set [27] was faster than PAL, but its performance was
quite variable across the datasets as can be seen in Figure 2.

4.2. Robustness to labeling errors

We simulated labeling errors by randomly assigning in-
correct labels to a subset of the labeled pool and the queried
set. We performed experiments on the SVHN dataset, cor-
rupting 20% of the data labels. We compared our technique
to other active learning techniques and to random sampling,
whose sampling performance is unaffected by label noise.
In Figure 3, we observe that our technique fares better com-
pared to the others tested. We attribute this robustness of
PAL to the use of the pretext task in the scoring network.

4.3. Introduction of new classes

We performed experiments with a biased initial pool
consisting of only eight out of the ten classes in the SVHN

Algorithm 2: Pretext-based Active Learning (PAL)
Result: Set of additional samples to be labeled DQ
Data: Labeled pool DL := {XL, YL}, unlabeled

pool DU := {XU}, query size N
Set: Num. epochs EQ and ES , num. sub-queries K
# Training task and scoring networks
for t ∈ {1, . . . , EQ} do

for {xl, yl} ∈ DL do
θ ← θ − η∇θL(fθ(xl), yl) # Task network
ψ ← ψ − η∇ψL(hψ(xl), yl) # SC
for i ∈ {0, 1, 2, 3} do

φ← φ− η∇φL(gφ (rot90i(xl)), i) # SR
for xu ∈ DU do

Use g, h to compute and save SR(xu), SC(xu)
# Diversity-based sub-query sampling
Initialize: DQ = ∅;φ′ = φ
for k ∈ {1, . . . ,K} do

for n ∈ {1, . . . , NK } do
if k == 1 then

xq ← arg min
xu∈DU

SR(xu) + λ1SC(xu)

else
xq ← arg min

xu∈DU

SR(xu) + λ1SC(xu) +

λ2SD(xu)
DQ ← DQ ∪ {xq}
DU ← DU − {xq}

for t ∈ {1, . . . , ES} do
for xq ∈ DQ do

for i ∈ {0, 1, 2, 3} do
φ′ ← φ′−η∇φ′L(gφ′ (rot90i(xq)), i)

for xu ∈ DU do
Use gφ′ to compute and save SD(xu)

Get oracle to label DQ and update DL

dataset. As seen in Figure 4, PAL is able to rapidly ramp
up the performance when it is allowed to sample from the
previously missing classes (after the initial 10% labels). In
fact, it quickly catches up with its own strong performance
on the unbiased initial pool case (i.e., the upper graph of
Figure 4 is same as that of SVHN results in Figure 2). As
shown in Figure 5, it procures samples from the previously
missing classes more rapidly (over-samples) than random
sampling and consequently, achieves higher overall accu-
racy at par with PAL that started with training on all ten
classes. On the other hand, the representation of the two
missing classes remains around 20% for random sampling,
once those classes are available for queries, as expected.

4.4. Robustness to scoring network architecture

We now demonstrate that the key ideas behind the per-
formance of PAL are what have been described thus far, and
not the backbone architecture of the scoring network. We
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Figure 2. Performance of random sampling, VAAL [29], DBAL [10], and core-set [27] compared with PAL (proposed) on CIFAR-10,
CIFAR-100, SVHN and Caltech-101. Markers show mean accuracy of five runs, and vertical bars show standard deviation (some are too
small to be visible). *Note that VAAL takes prohibitively long to train due to the use of a VAE. Therefore, we report results on CIFAR-100
from the original paper, and exclude results of VAAL on Caltech-101.

Figure 3. PAL performance on SVHN with 20% label noise.

replaced ResNet-18 with VGG-16, and found no significant
change in performance on the SVHN dataset, as shown in
Figure 6.

4.5. Importance of the score components

We examine the effect of the different components of our
score used to formulate the query by performing an ablation
study. We compare performance of 1) without the diversity
score SD (λ2 = 0, λ1 6= 0), 2) without the diversity score
SD and the supervision score SC for querying with the pre-
text task based uncertainty score (λ1 = 0, λ2 = 0), and 3)
the original scenario with both diversity and supervision in-
cluded (λ1 6= 0, λ2 6= 0). We observe that using uncertainty
estimates from both the pretext task and the classification
task give a much better performance, as is hypothesized in
Proposition 2. Adding the diversity score results in a fur-
ther improvement in the performance, as is expected. These

7



Figure 4. PAL performance on a biased initial pool (two classes
missing for the initial 10% of the labeled samples) on SVHN. The
upper graph is without a biased initial pool, and the lower graph
catches up quickly when PAL is allowed to sample the missing
classes in the queries.

Figure 5. PAL oversamples data from new classes in the first query
itself (total 15% of the dataset) as it finds it appropriately more novel
than the previously overrepresented classes, before settling into a
more equitable sampling by the third query (25% of the dataset).

results are summarized in Figure 7.

5. Conclusion and Discussion
We proposed a new active learning method to estimate

the novelty of unlabeled samples by introducing pretext-
based scoring (using self-supervised learning). The pro-
posed method uses the error in solving a self-supervised
task as a proxy measure for the novelty of an unlabeled sam-
ple and departs from previous proposals by using an auxil-
iary scoring network that resolve potential conflicts between
good task performance and query formation.

The scoring network is trained on the labeled samples in
order to model their distribution instead of that of the entire

Figure 6. Performance of random sampling compared to PAL
with Resnet-18 and VGG-16 as the backbone scoring network on
SVHN shows robustness to change in network architecture.

Figure 7. A comparison of performance of PAL using only self-
supervision for uncertainty (λ1 = 0, λ2 = 0), self-supervision
and supervision for uncertainty (λ1 6= 0, λ2 = 0), and all three
proposed components: self-supervision and supervision for uncer-
tainty, and sub-query self-supervision for diversity (λ1 6= 0, λ2 6=
0).

data. Furthermore, the scoring network itself is trained in a
multi-task manner, by including a supervised classification
head to regularize and boost the performance of the self-
supervised head. The multi-task training is necessary due
to the small number of samples in active learning.

This work presents early evidence that over-reliance on
only one measure of uncertainty may not be judicious, and
hybrid methods, where individual components compensate
for each other, are likely to work better. A hybrid scoring
method is able to break the reliance on labels, which may
be noisy, for modeling the data distribution by going lower
in the semantic hierarchy and tapping into the knowledge
gained by self-supervision. A similar observation that self-
supervised tasks add robustness in anomaly detection tasks
has been reported previously [18]. Specifically, the pro-
posed hybrid novelty scoring method uses KL divergence

8



from uniform distribution of the classification head for a dy-
namic trade-off between classification uncertainty and dif-
ficulty of predicting rotation. We considered using entropy
of class probabilities of the classification head instead of
the KL divergence, but the range of entropy values and its
derivative is finite. Thus, entropy would have been unable to
dynamically balance out the shortcomings of the rotational
head on samples on which it makes an error due to rea-
sons other than good data representation. We empirically
validated our hypotheses by showing strong performance of
PAL on a variety of datasets. Furthermore, we also showed
that PAL is robust to labeling an imperfect oracle and also
performs well even when the initial labeled data pool has no
samples from a few of the classes.

There is a need to balance between the twin goals of
assessing novelty and diversity to select samples for the
queries. By relying on novelty alone, there is a danger of
picking a lot of novel samples that do not reasonably cover
all regions of the data distribution. Conversely, methods
that rely on diversity, such as core-set [27], can be hijacked
by outliers in higher dimensions. While more research is
needed to jointly pursue both goals, our method takes a sub-
query approach to ensure that at least the samples in a sub-
query are different from that of another sub-query.
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