

Indian Institute of Technology, Bombay

DPAC: Digitally Programmable
Analog Computer

Dhruv Shah, Sachin Goyal & Srivatsan Sridhar

Prof. Mukul Chandorkar
EE344: Electronics Design Lab, Spring 2018

April 2018

D. Shah, S. Goyal & S. Sridhar

Abstract

Hardware-in-the-loop simulations are very commonly used to test controller design and monitor
how the controller responds, in real time, to realistic virtual stimuli. In an HIL simulation, a
real-time computer is used as a virtual representation of the plant model and a real version of the
concerned controller. Most of these dynamical systems are in the form of coupled differential
equations, and digital computers tend to be terribly slow at iteratively approximating solutions to
such systems. The notion of using analog computing grids to efficiently solve differential
equations (in hardware) has been well accepted in the research fraternity, and proves to be a
faster way to solve linear dynamical systems.
In this project, we demonstrate a digitally programmable analog computer, which can solve
linear dynamical systems with upto 5 state variables. The system is capable of working in real
time, since there are no moving parts once the configuration is set and the system is
programmed. The system is capable of being driven by upto 5 forcing functions, and can
represent any linear dynamical system of the form

 Ax Buẋ = +
 Cx Duy = +

It consists of active devices to implement integrators, gain blocks and inverter blocks using
operational amplifiers, along with passive components to emulate the system matrix. These
blocks will be linked together using analog switches which would be controlled by signals given
by a microcontroller. For our first prototype, we assume , for the sake of simplicity.B = C = I5
In this report, we present the design philosophies, layout descriptions, experimental results and
analyses of two prototypes ㅡ DPAC-𝜷 and DPACv1.0. The DPAC-𝜷 is a miniature version of
the DPACv1.0, to emulate second order systems, and features a block-modular structure and
mechanical switches, allowing easy configuration of the system matrix and operational
parameters. The DPACv1.0 features a single PCB, is interfaced and controlled using a
microcontroller, and is capable of solving the linear dynamical system in real time.

2

D. Shah, S. Goyal & S. Sridhar

Table of Contents
Abstract 2

Table of Contents 3

1 : Introduction 4
1.1 Objectives 4
1.2 Block Diagram 4
1.3 Background and Motivation 5
1.4 Target specifications 6

2 : System Overview 6
2.1 Design Alternatives 6
2.2 Required Subsystems 7

i) Power Supply 7
ii) Programmable Microcontroller 8
iii) Analog Computer Grid 8

3 : Project Implementation 9
3.1 Power Management Circuit 9
3.2 Microcontroller - MSP430 and MAX395 Switches 9
3.3 Using MSP430F168 for SPI Communication with Slave 11
3.4 Programming the MSP over USB 11
3.5 Active devices 12

4 : Performance Evaluation 13
4.1 First prototype: DPAC-𝛽 13

4.1.1 Design 13
4.1.2 Experiments and Results 14
4.1.3 Observations & Inference 16

4.2 DPACv1.0 16
4.2.1 Features and Specifications 16
4.2.2 Testing and Evaluation of the Final Board 17
4.2.3 Experiments and Results 17

5: Conclusion & Future Work 22

APPENDIX 23
A: MSP430 Issues and Pt51 23
B: Setting up DPACv1.0 - A User’s Guide 24

3

D. Shah, S. Goyal & S. Sridhar

1 : Introduction
In this section, we begin by defining the objectives of the project, the motivation behind
the choice, and the desired system specifications.

1.1 Objectives

● To build a single-board analog computer to solve linear dynamical systems
described by an equation of the form . Ax uẋ = + B

● The analog computer will be programmed digitally, by programming an on-board
FPGA/microcontroller using the computer.

● The analog computer will be made of basic blocks like integrator, inverter and gain
blocks, interconnected with a dense layout of programmable switches.

● The microcontroller, once programmed will selectively open or close the switches to
interconnect the blocks for the required circuit.

The final system will have an input to program the controller, input functions for the
simulation and will output the response of the system being simulated.

1.2 Block Diagram

Figure: ​​Block diagram of the proposed analog computer

4

D. Shah, S. Goyal & S. Sridhar

1.3 Background and Motivation

Simulation of complex linear dynamical systems is important in the design and testing of
any control system, to ensure that it works correctly on the given system even before
applying it to the actual system. An arrangement called ​hardware-in-the-loop ​(shown in
figure) is commonly used for this testing. Hardware-in-loop simulation is commonly
used in testing of automobile control units where in-vehicle testing is time-consuming,
expensive and not reproducible. This method involves virtually simulating the linear
dynamical system (such as the engine of a car) on a computer.

Figure: ​​An illustration showing Hardware-in-loop simulation

Since a closed form solution of such systems does not exist, in practice, digital
computers attempt to solve such systems by iteratively solving the differential equations
involved. Not only is this time consuming, some higher order coupled differential
systems may not even be feasibly solved on personal computers. An analog circuit that
can model the required linear system can perform this simulation in real time, much like
how the first analog computers worked.

While a digital process computes the answer through iterative steps, is time-consuming
and computationally expensive, it assures the correct answer. An analog process works
in real time but will offer limited accuracy in its answer. There is current research to
study a hybrid approach using an analog process to quickly get an initial estimate and
then using a digital process to get the precise answer.

The possibility of an analog computing attachment, that is digitally programmable,
sounds very interesting, and has the capability to simulate real-time ​hardware in loop
systems with great certainty, and at a much lower cost than employing computing
clusters.

5

D. Shah, S. Goyal & S. Sridhar

1.4 Target specifications
● Solve linear differential equations of the form . (We take for Ax Buẋ = + B = I

this system. This simplifies the prototyping phase, and can always be extended
to a generic ​B​ matrix using gain blocks)

● The state variable vector may have at most 5 elements.x
● There may be at most 5 forcing functions in the vector (t)u
● The coefficients in the matrices and can be signed and allow easy A B

reconfiguration by the user.
● The system must be self-sufficient, with onboard power management and

microcontroller interfacing.

2 : System Overview

2.1 Design Alternatives
The figure below illustrates the possible pathways of designing an analog computing
grid. The first approach, using configurable analog blocks (CABs), is inspired from the
idea of using look-up tables (LUTs) in FPGAs - using a common building block of
analog components, which can then be used as either an integrator, gain blocks, and so
on. Such an arrangement increases the versatility of the usage and builds towards the
notion of a Field Programmable Analog Array (FPAA).

The second design approach would be to make dedicated blocks for each task - gain
blocks, summers, integrators and inverters. This makes the whole system modular and
easier to interpret and implement. The fact that each block is now a dedicated one also
reduces the complexity of each block, at the cost of designing more blocks. The grid
design can be further divided into two approaches - (i) using a fully-connected, fixed
grid, which allows the possibility of representing dense matrices and , and (ii) using A B
suitable routing algorithms that only invoke as many blocks as would be required by the
dynamical system to be solved. This may reduce the number of components required,
but would increase the computational complexity of the routing algorithm.

Using configurable blocks to represent the system would require a much larger number
of passive elements, a large fraction of which would remain unused or idle. The routing

6

D. Shah, S. Goyal & S. Sridhar

complexity would also be quite significant, and hence, this approach sounds overkill for
the system that we are aiming to model. Using dedicated blocks presents a modular
architecture and better usability of the analog components that form the grid.

We will be attempting to solve the problem by this approach of using 3 levels of
dedicated blocks to compute the intermediate variables. A good way to begin would be
to use suitable routing algorithms, controlled by low resistance analog switches, which
are controlled using an FPGA/microcontroller, to create a graph of connections in the
analog grid.
.

Figure: ​​Design paradigms for implementing an analog computational grid

2.2 Required Subsystems
This section is a short description of the major subsystems that would be required in this
project. Implementation details of the subsystems will be explained in the next section.

i)​​ ​Power Supply
In our design, the microcontroller has a voltage level of 3.3V. We have used

analog switches and op-amps which have a bipolar supply of +5V and -5V. We derive
our power supply from 9V AC taken from a 50Hz transformer. Thus, we require a circuit
to supply 3.3V, +5V and -5V from the 9V AC voltage.

7

D. Shah, S. Goyal & S. Sridhar

Figure: ​​Block diagram of power management subsystem

ii) ​​Programmable Microcontroller
The analog computer grid contains a large number (110) of analog switches to

control the coefficients of the differential equation to be solved. These switches can be
configured using a microcontroller which uses SPI communication to communicate with
switch and set its state to on or off.

iii)​​ ​Analog Computer Grid
The analog computer has three main stages - inverter, adder and integrator.

The inverter inverts each of the signals ​x​1​ to ​x​5​. The matrix A involves taking linear
combinations of the signals ​x​1​ to ​x​5​ and then adding it with ​u(t)​ to generate ​Ax + u​.
Finally these signals are integrated and fed back to ​x​1​ to ​x​5​. This implements the system

. Ax uẋ = +

Figure: ​​Overview of the analog computer

8

D. Shah, S. Goyal & S. Sridhar

3 : Project Implementation

3.1 Power Management Circuit
The input to the power supply circuit is AC voltage of 9V from a transformer. A diode
bridge rectifier has been used to convert this to DC. ICs 7805 and 7905 have been used
to derive +5V and -5V DC voltages. The op-amps and analog switches are powered by
+5V and -5V. A low-dropout (LDO) voltage regulator TPS7333 is used to obtain a 3.3V
supply for the microcontroller. This circuit lies on the main board of our design.

Decoupling capacitors of 0.1uF are placed at power supply pins of every IC. Larger
decoupling capacitors of 10uF and 1000uF are placed around the 7805 and 7905 ICs.
The operating range of 7805 and 7905 requires their input voltage to be at least 8V.
Reverse-biased diodes are added to prevent any back-voltage.

A low ESR (1Ω) solid tantalum capacitor must be placed between the output of the
TPS7333 and ground. In the absence of this, the output gives a higher value (3.6V)
which could damage the microcontroller.

Figure: ​​Design of the power management subsystem

3.2 Microcontroller - MSP430 and MAX395 Switches

DPACv1.0 allows the user to keep 4 different signed values of coefficients (土 0,1,2,3)
of each element of the matrix. This has been implemented by using two resistors in
parallel with each other, switched using an SPST switch in series with both the resistors

9

D. Shah, S. Goyal & S. Sridhar

to control there parallel or separate connections. The switches used are MAX395 ICs,
each IC having 8 analog SPST switches. The switches are programmed by sending 8
bits (1 Byte) using SPI. These switches have a maximum on-state resistance of 100Ω.
The MAX395 switches are controlled in cascade by SPI communication using
MSP430F168 microcontroller, using a process called daisy chaining (explained later).

MAX395 can be considered as a 8 bit shift register. The special thing about these
digitally controlled switches is that they can be daisy chained with each other. The input
data appearing at the ​DIN ​port of the register is clocked in at rising edge of ​SCLK ​and
clocked out at the ​DOUT ​at the falling edge of ​SCLK​. The data at ​DOUT ​is simply ​DIN
delayed by 8 clock cycles. As can be seen in the figure below, the ​DOUT ​pin of a switch
may be connected to the ​DIN ​of another to transfer the register data. The daisy chained
switches and the microcontroller communicate with each other using SPI
communication.

Figure: ​​Setting up the microcontroller

10

D. Shah, S. Goyal & S. Sridhar

Figure: ​​Daisy chaining of the switches for SPI communication

3.3 Using MSP430F168 for SPI Communication with Slave
MSP has 2 dedicated USART modules which support serial data communication (both
synchronous and asynchronous).

1. We use the USART 0 module on ​PORT3 ​for SPI communication.
2. P3.1 is the ​SIMO ​pin and is connected to the ​DIN ​of the max395 switches.
3. P3.3 is the ​SCLK ​and is connected to the SCLK of switch
4. The registers of switch clock in data when is low. We control using P4.0 CS CS

of MSP as an output pin. The states of the switches are set according to the
contents of the shift register when goes high.CS

3.4 Programming the MSP over USB

The Texas Instruments’ MSP430 (see figure above) can be programmed using either
JTAG or Bootstrap Loader (BSL). We use BSL for programming, using the FT232. The
FTDI chip is an interface between the USB port on the PC and the serial port on MSP.
The FT232 gives 5 signals to communicate with MSP :-

● SLB TXD Transmits the data to MSP
● SLB RXD Receives the data from MSP
● RSTNMI For initializing the MSP
● TRD For initializing the MSP
● NDG Ground terminal

The MSP enters bootstrap loader mode when it receives a low pulse on RSTNMI
followed by a low pulse on ​DTR​. The PC then sends 0x80 on ​RxD ​and MSP replies with
0x90 on ​TxD​. After this, the program is transferred using ​TxD ​and ​RxD ​pins.

11

D. Shah, S. Goyal & S. Sridhar

3.5 Active devices
As mentioned in the previous section, the three main stages of the analog grid are the
inverters, adders and integrators. All three of these are implemented using op-amps and
passive elements. For our 5x5 system, the first section has 5 analog inverters to invert
the signals ​x​1 ​to ​x ​5​. This is followed by 25 switches to choose either ​x or ​-x depending
on the sign of each coefficients. This is followed by the adder stage. We have 5 adders
here. The first adder adds ​x​1 ​to ​x​5 ​and ​u​1 scaled by different coefficients, and so on.
Thus we can implement even a fully dense matrix. The coefficients are chosen by
varying the input resistors of each signal. We have 4 possible values (0,1,2,3) for each
coefficient by having 2 resistors, their parallel combination and an open circuit.
The output of the adders goes to the next section with 5 integrators. The gain of the
integrator depends on the frequency of the signals used. For instance when a signal

is integrated, we get . In order to have a reasonable gain forsin(2πf t)A 2πfcos(2πf t)A 1
RC

a large range of frequencies, we have made the possibility of changing the resistance at
the input of the integrator. We have two values of R which give unity gain at frequencies
330Hz and 3300Hz. However it will give a reasonable gain (close to 1) for frequencies
in the order of these frequencies.
Finally, the equation simulated by this system can be represented as:

where and can have values in {土 0,1,2,3}.πf (Ax u)ẋ = 2 0 + πf2 0 = 1
RC A

Figure: ​​(​clockwise​) The inverter block (a) enables signed entries in the system matrix . The gain block A
(b) is capable of providing gains within a subset of discrete values. The switches can be programmed to
achieve the desired system matrix (signed). The integrator block (c) is responsible for closing the loop on

the feedback system, allowing the system to stabilize at its solution.

12

D. Shah, S. Goyal & S. Sridhar

4 : Performance Evaluation

4.1 First prototype: DPAC-𝛽

Given the complexity of the desired system and the large lead times involved in the
planning, layout, design and fabrication of the main board, a preliminary prototype -
hereby referred to as the DPAC-​𝛽𝛽​​, ​​was designed. The specifications of DPAC-​𝛽𝛽 ​​are as
follows

● Can solve linear dynamical systems of upto second order
● The system matrix is programmableA
● Supports a wide range of frequencies, from 350 to 3500 Hz

In this section, we describe the design philosophy and layout of our first prototype for a
linear dynamical system solver.

4.1.1 Design

The motivation behind creating the DPAC-​𝛽𝛽 ​​was to understand the behaviour and
functioning of a switched dynamical system on a printed circuit board. The prototype is
powered by stable DC voltage sources, and the power management circuit is omitted.
The system consists of two state variables and upto two forcing functions . , xx1 2 , uu1 2
The layout is kept clean, symmetric and easy to interpret and debug.

TL32PO switches are used to emulate the MAX395 analog switches, and can be used
to ​program the system. The switches are used to set the entries of the system function

(signed entries), as well as the frequency of operation. The figureA 1, 1.33}∈ ± {
below shows the schematic of the analog grid in DPAC-​𝛽𝛽 ​​, with the various blocks
marked annotated.

The board layout of DPAC-​𝛽𝛽​​, which comprises of a dual-layer PCB, further outlines the
modular operation and the block-wise design philosophy, making it convenient to debug
and localize faults. The PCB was fabricated at the PCB Printing Laboratory within the
Department of Electrical Engineering at IIT Bombay. The op-amps used were operated
at a Vcc of 2V.

13

D. Shah, S. Goyal & S. Sridhar

Figure: ​​Annotated circuit layout of DPAC-​𝛽𝛽

Figure: ​​Board layout of DPAC-​𝛽𝛽

4.1.2 Experiments and Results
The DPAC-​𝛽𝛽 was extensively tested to model the behaviour of switched dynamical
systems in hardware via a routine of cleverly designed experiments. These experiments
test each component of the analog grid in DPAC-​𝛽𝛽​​, eventually to be used in DPACv1.0,
and give valuable insights into the working of an analog linear dynamical system solver.

14

D. Shah, S. Goyal & S. Sridhar

Here, we present the results and analysis of a set of 4 experiments carried out on the
DPAC-​𝛽𝛽 ​​.
In experiments 1 & 2 below, we test each channel of the system independently, i.e.,
forcing the other state variable to zero. Experiments 3 & 4 demonstrate a full 2 × 2
system matrix, which is manually configured using the TL32PO switches. The system
matrix was designed such that the eigenvalues lie on the open left-half plane, i.e., the
system has a stable response. The observed steady-state responses are compared
with the ​expected ​(ideal) steady state responses, which are simulated using
Mathematica 11.

1. Single channel setup 1
○ Setup ​:

■ πf A X uX1
˙ = − 2 0 1 +

■ 0.174 sin(2πf t)u :
■ , f 386 HzA = 1 0 = 3

○ Steady state solution​:
■ Expected: 0.1216 sin(ωt 45)X2 = − o

■ Observed: 0.122 sin(ωt 43.8)X2
ˆ = − o

2. Full matrix setup 1
○ Setup ​:

■ πf (A X u)Ẋ = 2 0 +
■ A :

 -1 -1.33

 1 -1

■
■ u : .086 [cos(2πf t) sin(2πf t)]0 T
■ 338f 0 =

○ Steady state solution​:
■ Expected (In phasor representation):

● 1.055ㄥ10.39 0.93ㄥ 2.9] X = [o − 8 o T
● This is relative to the input. The ratio is .15ㄥ93.29 1 o

■ Observed:
● 0.244ㄥ0 0.208ㄥ102] X̂ = [o o T
● The ratio of the output is hence .13ㄥ102 1 o

It is important to note that comparing the absolute values of the internal states with the
simulated response doesn’t have much meaning (in experiments 3 & 4), but the ratio of
the phasors must be preserved.

15

D. Shah, S. Goyal & S. Sridhar

4.1.3 Observations & Inference

Each of the four experiments ran successfully, with their outputs satisfactorily close to
the ideal/simulated responses. The following general observations were made:

● A critical requirement of the system is that the system matrix must be A
realizable with the available coefficient choices. Using the set available in
DPAC-​𝛽𝛽​​, the number of experimental setups was limited by the number of stable
systems that may be designed with the available coefficients.

● It is important that the forced input is narrow-band, or pure sinusoid, as the active
integrator has a frequency-dependent gain. If the frequencies are not of the order
of , the amplification of the signal may be too high (leading to saturation) or too f 0
low (will be affected by noise).

● The transients observed decay ​very fast. The transient time is indeed a function
of the system parameters. Specifically the transient time constant is of the order
of . This observation gives keen insight into the choice of system parameters f 0
for DPACv1.0, so as to allow an observable transient, as per the system
requirements.

● The PCB tracks are unshielded and pick up stray signals from the surroundings,
affecting the performance of the solver. Since the forcing functions have small
magnitudes, this interference hampers the performance of the system.

4.2 DPACv1.0

4.2.1 Features and Specifications

The final board DPACv1.0 comprises of a full-fledged implementation of a digitally
programmable linear dynamical system solver, with capability to solve systems upto
order 5. It consists of an onboard microcontroller - the Texas Instruments MSP430/F168
- which is programmed via USB. The board also supports communication via USART.
The board features its own power management circuitry, and can be plugged into a
wall-socket AC source when coupled with a 9V step-down transformer. The board was
fabricated at PCB Power Market, Ahmedabad. It intends to solve 5x5 systems (while the
DPAC-​𝛽𝛽 ​​ solved 2x2 systems).

16

D. Shah, S. Goyal & S. Sridhar

4.2.2 Testing and Evaluation of the Final Board
We tested the board in multiple stages. A systematic way of testing helps us in moving
from smaller to larger subsystems. This allows us to efficiently isolate the cause of any
error on the board.

1) First, we checked the power supply subsystem. If this goes wrong, it could
seriously affect the ICs. Thus we checked the power subsystem even before
soldering any of the ICs. We checked that every pin and every pad has received
the right power supply voltages.

2) Second stage was testing the MSP programmer. Unfortunately in this stage, the
programmer gives a “Password not recognized” error which we were unable to
resolve. Thus we modified our plan to now use an off-board Pt-51 microcontroller
to program the switches.

3) In the third stage, we tested the control of the switches. At first, we gave a single
byte on SPI to test a single MAX 395 IC (8 switches) being programmed
correctly. Then we sent 2 bytes to program 2 ICs by daisy chaining. Once this
was successful, we sent 14 bytes on SPI to program all the switches.

4) After all these components were tested, we move on to test a few representative
systems on the DPAC. We begin by evaluating this board on 1x1, then 2x2
systems, and use the same test cases that we used for DPAC-​𝛽𝛽. ​​After testing
that each of the channels ​X​1 ​to ​X​5 are working, we proceed to test some
higher-order systems.

5) Lastly, we simulated a few real-world dynamical systems on the DPAC, and paid
keen attention to the transient responses. The results of these experiments will
be outlined below.

4.2.3 Experiments and Results
1. Simulation of sinusoidal excitation of a series R-L-C circuit

○ Setup ​:

■ i , u = R + L dt
di i = C dt

dv
■ , L R = 2 = C = 1

17

D. Shah, S. Goyal & S. Sridhar

■ i v]X = [T

■ πf (AX u)Ẋ = 2 0 +
■ A :

 -2 -1

 1 0

■ u : 0.5sin(2πf t) 0][T
■ 338f 0 =

○ Solution ​:
■ The transients may not match exactly because the initial phase of

the forcing function obtained from the AFG is random.

Simulation on Matlab

Observed Output Waveform

18

D. Shah, S. Goyal & S. Sridhar

2. Simulation of a spring-mass system with friction

○ Setup ​:

■ − x v , m (x) vm1 dt
dv1 = K1 1 − μ1 1 2 dt

dv2 = F − K2 2 − x1 − μ2 2

■ , vv1 = dt
dx1 2 = dt

dx2
■ K1 = K2 = μ1 = μ2 = m1 = m2 = 1
■ x x v v]X = [1 2 1 2

T

■ πf (AX u)Ẋ = 2 0 +
■ A :

 0 0 1 0

 0 0 0 1

 -2 1 -1 0

 1 -1 0 -1

19

D. Shah, S. Goyal & S. Sridhar

■ u : 0 0 0 0.28sin(2πf t)]F = [T
■ 338f 0 =

○ Solution ​:
■ This experiment illustrates the capability of the DPAC to simulate

higher order systems.
■ The transients may not match exactly because the initial phase of

the forcing function obtained from the AFG is random.

Simulation on Matlab

Observed Output Waveform

3. Simulation of step response of a second order transfer function

20

D. Shah, S. Goyal & S. Sridhar

○ Setup ​:
■ (s)G = 1

s +2ζω s+ω2 n n2

■ x x]X = [˙ T

■ πf (AX u)Ẋ = 2 0 +

■ u : (Step function was realised using a 4Hz pulse with 2.5%0 u(t)][T
duty cycle)

■ 338f 0 =
■ Case 1 : (Lesser damping) , ζωωn

2 = 3 n = 1
A :

 0 1

 -3 -1

■ Case 2 : (More damping) , ζωωn

2 = 3 n = 2
A :

 0 1

 -3 -2

○ Solution ​:

■ This experiment was used to illustrate the programmability of the
DPAC. We can easily change the parameters of the system matrix to
change the damping ratio of the step response.

Test Case Observed Output Waveform

Case 1 : , ζωωn
2 = 3 n = 1

(Lesser damping)
A :

 0 1

 -3 -1

21

D. Shah, S. Goyal & S. Sridhar

Case 2 : , ζωωn
2 = 3 n = 2

(More damping)
A :

 0 1

 -3 -2

4. Summary of the experiments:

a. We have successfully tested system of upto the 5th order on the DPAC.
b. We have found that the transient response is also very accurate at any

frequency of operation (in the range of the DPAC).
c. The only limitation of the DPACv1.0 is that the coeffiecients are chosen

from a small discrete set of values.

5: Conclusion & Future Work

This project may be taken as a proof-of-concept for a digitally programmable analog
computer. As follow ups to this project , following tasks can be done :-

1) Rectify the programing error of MSP microcontroller, so that we can have an
on-board microcontroller.

2) Extend the design to allow modeling of nonlinear systems by using the onboard
microcontroller, with DAC & ADC, as multipliers etc.

3) Explore an alternative design which can allow us to program a wider range of
coefficients. (Example - use of digital potentiometers). We did not used digital
potentiometers in DPACv1.0 because they come with poor tolerances.

4) We have not taken into account equations which may have non trivial initial
conditions. This can be incorporated by implementing a design which has options
for proper charging and discharging of capacitors on board.

22

D. Shah, S. Goyal & S. Sridhar

APPENDIX

A: MSP430 Issues and Pt51

We initially had planned to use MSP430 on board along with a FTDI board to program
all the MAX395 switches.MSP430 has several advantages over other microcontrollers
like Pt51 and arduino foremost of which is that it has multiple UART communication
modules. MSP430 has 8 ADC pins which can be used for implementing on board
multiplication and later for solving higher degree differential equations.

We use FTDI board to program the MSP via BSL interface. Hex files can be directly
uploaded on MSP via Linux Terminal. One just needs to install msp430 gcc compiler for
this purpose (Linux Terminal :- sudo apt-get install gcc-msp430).
When connecting with the FTDI for the first time, you get a error related to driver file for
USB port 0. It can be easily resolved by googling the error and updating the related file.
Unfortunately we could not resolve some issues in connecting with MSP430 which
persistently showed “password not recognized” error. It was due to MSP not responding
back to the communication signals sent by FTDI board. The RST/NMI pin as well as the
TCK pin did get the required pulses and the BSL_TXD sends the first bit for checking
communication but the MSP doesn’t respond back. Reasons for this unexpected
behaviour could not be figured out.

The reader is highly encouraged to try working with MSP and figure out the error. After
discussion with our faculty guide and some seniors from the lab, we speculate that the
error is because of an improper power-on reset of the MSP. One attempt to resolve the
issue can be to connect the reset output of the TPS7333 LDO voltage converter to the
reset pin of the MSP.

The current version i.e. DPAC 1.0 uses a Pt51 microcontroller board (a 8051 based
in-house production of IIT Bombay). A proper documentation on its usage is easily
available in Wadhwani Electronics Laboratory (WEL, IITB).

The Pt-51 is easily programmed in C language using an assembler like Keil. The Hex
file generated is loaded on the Pt-51 using Atmel Flip. It is done via a direct USB
connection.

23

D. Shah, S. Goyal & S. Sridhar

B: Setting up DPACv1.0 - A User’s Guide

Powering up the DPACv1.0 is very simple. Follow this guide to simulate your own linear
dynamical system on the DPAC!

Power Supply
Arrange for a DC supply of +9V and -9V. You may need to use 2 separate power
supplies for the same. Connect +9V, GND and -9V to red,black and green header cap
respectively on the DPAC. Alternatively, you can also connect any AC power source
with a peak voltage of around 9V, with connections made accordingly.

Microcontroller Connections - Pt51 Development Board
1) SCLK on Pt51 to SCLK header on DPAC
2) MOSI of Pt51 to UC_IN header on DPAC
3) P3.0 of Pt51 to CS_bar (Any other GPIO pin maybe used in place of P3.0 along

with appropriate changes made in the code)
4) GND to GND
5) RESET_BAR header to +3.3V on the DPAC board

Configuring the System Matrix and Forcing Functions

1) We have made a simple Python script which can be used to get the switch
configurations that need to programmed on the DPAC, given the system matrix.

2) These values are put into the C code for the Pt-51 microcontroller. The code is
compiled and built using Keil.

3) Finally the ​.hex​ file generated is loaded on the Pt-51 using Atmel Flip.
4) A set of 6 pin headers towards the bottom of the board provide pins to connect

the 5 forcing functions ​u​1​ ​to ​u​5​ and GND.
5) A set of 5 pairs of pin headers towards the bottom left provide pins to observe the

outputs ​x​1​ ​to ​x​5​.

24

