Indoor Distance Estimation using LSTMs over WLAN Network

Hitachi Al Conference, 2020

P. Sankhe, S. Azim, S. Goyal, T. Choudhary, K. Appaiah, S. Srikant

Tuesday 28th July, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Indoor Positioning System (IPS)

- Estimating the position/location of an object or device in an indoor environment setting (closed rooms, buildings, etc.)
- Similar to Global Positioning System (GPS)
- Instead of using satellites, IPS relies on nearby anchor nodes with known positions
- Anchors either actively locate the target object or provide environmental context

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

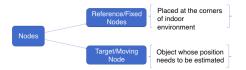
Problems with GPS in indoor environments

- Lack of strong GPS signal reception in indoor environments
- GPS indoor localization accuracy limited due to -
 - Signal attenuation and scattering by walls, roofs, and other obstacles
 - GPS satellites do not transmit strong enough to reach indoors
 - Signals that enter buildings are unreliable due to multiple reflections and thus give inaccurate distance measures

- \blacktriangleright GPS Localization error in indoor environments ~4 10 m (approx) and even more than that
- Insufficient for high accuracy demanding indoor positioning applications

Precise and rapid indoor location service enables

- Fine-grained precise location in complex indoor settings - supermarkets, libraries, museums, airport, warehouses, etc.
- Augmented reality support on the smartphone, wearables or glasses
- Asset Tracking


Existing IPS Methods

- Based on light, radio waves, wireless signals, vision, acoustic signals, etc.
- WiFi-based solution popular because WiFi is ubiquitous and densely deployed
- WiFi-based solution depends on acquiring various signal parameters -
 - Received Signal Strength Indicator (RSSI): commercial standard WiFi chips
 - Channel State Information (CSI): available on some specific WiFi devices
- Examples: ArrayTrack (6-8 antennas), LTEye (rotatory antennas), Ubicarse (motion sensors, user involvement)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

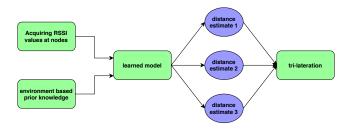
Proposed Approach: System Design

- Overall system
 - 3 Wireless Access Point (WAP)
 - single or multiple target nodes
 - N reference or fixed anchor nodes

Fixed WAP Moving node

Figure: System model: a WAP, 4 fixed reference nodes (known position) and a moving target node. Nodes are wirelessly connected to the WAP network

- Function of reference nodes: To model the surrounding environment topology
- Number and configuration of reference nodes dependent on indoor topology


Figure: NodeMCU: configurable WiFi Module running on ESP8266

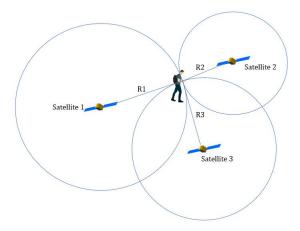
Proposed Approach: Overview

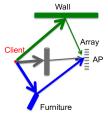
- Acquiring RSSI values of the connection between the transmitter (WAP) and the receivers (the nodes)
- Using data-driven model to estimate the target node's distance from the WAP
- Exploit the dependence of RSS at any node on its distance from WAP and surrounding topology

$$d(target, WAP) = f_S(RSSI) \tag{1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposed Approach: Trilateration




Figure: Trilateration: estimating target device location using estimated distances from the three WAP

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

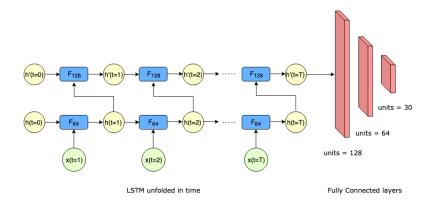
Proposed Approach: Path Loss Effects

- Path-Loss happens during signal propagation from the transmitter to the receiver
 - Shadowing: Effect causing RSS to fluctuate due to obstruction of signal path
 - Multipath: Signal arriving at receiver via multiple paths causes temporal variations

- Path-loss effects vary spatially and temporally depending on surroundings changes
- LSTM based model employed to model the RSS correlation across time
- Reference nodes employed to take into account the surrounding spatial topology

Experimental Setup

Data Collection


- Recorded RSSI data between nodes and the WAPs
- Ground-truth distance of the moving target node from the 3 WAPs collected using precise Vicon-based camera system

Problem Formulation

- Distance estimation problem formulated as classification task over equal-sized bins
- Model learns to predict the bin-class and reports the center of the predicted bin as estimated distance from WAP

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model Architecture

- 2 stacked LSTM layers followed by fully-connected layers
- F_n represents LSTM cell, h(t), h'(t) & x(t) represent cell states, input features resp.

Results & Comparisons

- Average localization error of 5.43 cm with correctness confidence of 93%
- System's adaptability validated by evaluating performance at multiple different indoor locations

Test location	5.43 cm Accuracy	Average error upper
	confidence (in %)	bound (in cm)
location 1	93.94	8.67
location 2	92.51	7.36
location 3	93.89	8.12
location 4	92.99	8.55

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Results & Comparisons

Methods	Average Errors	Scale
Ibrahim et al.	277 cm	A City Building
Lukito et al.	83% Classification	University Campus
	Accuracy	
Wang et al.	94 cm	Room of dimension 4 m $ imes$
		7 m
Sadowski et al.	48.6 cm	Room of dimension 10.8
		m × 7.3 m
Our Method	8.67 cm	Room of dimension 8.46
		m × 6.98 m

▶ No specific benchmark for comparing two different IPS system performance

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

System performance depends on various factors -

- hardware used
- system setup requirement
- position estimation algorithm
- accuracy in various indoor settings

Thank You for your attention !!!